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Simultaneous Equation Estimates (Exact

and Approximate), Distribution of

A simple example of a system of linear simultaneous
equations may consist of production and consumption
functions of a nation: Y¯ abKcLerror, and C
¯ deYerror. The variables Y, K, L, and C
represent the gross domestic product (GDP), the
capital equipment, the labor input, and the consump-
tion, respectively.

These variables are measures of the level of econ-
omic activity of a nation. In the production function,
Y increases if the inputs K and}or L increase. C
increases if Y increases in the consumption equation.
Each equation is modeled to explain the variation in
the left-hand side ‘explained’ variable by the variation
in the right-hand side ‘explanatory’ variables. Error
terms are added to analyze numerically the effect of
the neglected factors from the right-hand side of the
equation. These equations are different from the
regression equations since the ‘explained’ variable Y is
the ‘explanatory’ variable in the C equation, and Y
and C are simultaneously determined by the two
equations. Estimation of unknown coefficients and the
properties of estimation methods are not straight-
forward compared with the ordinary least squares
estimator.

In practice, this kind of simultaneous equation
system is extended to include more than 100 equations,
and regularly updated to measure the economic
activities of a nation. It is indispensable to analyze
numerically the effect of policy changes and public
investments.

In this article, the statistical model and the es-
timation methods of all the equations are first ex-
plained, followed by the estimation methods of a

single equation and their asymptotic distributions.
Explained next are the exact distributions, the asymp-
totic expansions, and the higher order efficiency of the
estimators.

1. The System of Simultaneous Equations and
Identification of the System

We write the structural form of a system consisting of
G simultaneous equations as

y
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i
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i
u
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3 (Y

i
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i
)δ

i
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,

i¯ 1,…, G (1)
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i
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are 1 and G
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matrix of whole endogenous variables Y¯
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, Y
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), Z
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is the T¬1 error term. This

system of G equations with T observations is fre-
quently summarized in a simple form
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Eqn. (1). The ith columns of B and Γ may be denoted
as b

i
and c

i
where (G®G

i
®1) and (K®K

i
) elements

are zero so that y
i
®Y

i
β
i
®Z

i
γ
i
¯Yb

i
Zc

i
. Zero ele-

ments are called zero restrictions. It is assumed that
each row of U is independently distributed as N(0, Σ).
The reduced form of Eqn. (2) is

Y¯ZΠV (3)

where the K¬G reduced form coefficient matrix is Π
¯®ΓB−", and the T¬G reduced form error term is V
¯UB−". Each row of V is assumed to be independently
distributed as N(0, Ω), and then Σ¯B−", ΩB−".

The definition Π¯®ΓB−", or ®ΠB¯Γ is the key
to identify structural coefficients. Coefficients in β

i
are

identified if they can be uniquely determined by the
equation ®Πb

i
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given Π. This equation is reduced
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!
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equations
through ®Πb
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. L is called the number of the

degrees of overidentifiability of the ith equation.
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Structural coefficients are not uniquely estimable if
they are not identified (see Statistical Identification and
Estimability).

2. Estimation Methods of the Whole System and
the Asymptotic Distribution

The full information maximum likelihood (FIML)
estimator of all nonzero structural coefficients δ

i
, i¯

1,…, G, follows from Eqn. (3). Since it is in a linear
regression form, the likelihood function can first be
minimized with respect to Ω. Once Ω is replaced by the
first-order condition, the likelihood function is con-
centrated where only B and Γ are unknown. The
concentrated likelihood function is proportional to

lnrΩ
R
r, Ω

R
¯ (Y®ZΠ

R
)«(Y®ZΠ

R
)}T,

Π
R
¯®ΓB−", (4)

and all zero restrictions are included in B and Γ
matrices. In the FIML estimation, it is necessary to
minimize rΩ

R
r with respect to all non-zero structural

coefficients.
The FIML estimator is consistent, and the asymp-

totic distribution is derived by the central limit
theorem. Stacking δ

i
, i¯ 1,…, G in a column vector δ,

the FIML estimator δ# asymptotically approaches
N(0, ®I−") as follows:

oT(δW ®δ)!D N(0, ®I−"), I¯ lim
T!¢

1

T
E 0¦#lnrΩ

R
r

¦δ ¦δ« 1 . (5)

I is the limit of the average of the information matrix,
i.e., ®I−" is the asymptotic Cramer–Rao lower bound.
Then the FIML estimator is the best among consistent
and asymptotically normal (BCAN) estimators.

The right-hand side endogenous variable Y
i
in (1) is

defined by a set of G
i
columns in (3) such as Y

i
¯

ZΠ
i
V

i
. By the definition of V, Y

i
or, equivalently, V

i

is correlated with u
i
since columns in U are correlated

with each other. The least squares estimator applied to
(1) is inconsistent because of the correlation between
Y

i
and u

i
. Since Z is assumed to be not correlated with

U in the limit, Z is used as K instruments in the
instrumental variable method estimator. Premultiply-
ing Z« to (1), it follows that
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where the K¬1 transformed right-hand side variables
Z«Y

i
is not correlated with u*

i
in the limit. Stacking all

G transformed equations in a column form, the G
equations are summarized as w¯Xδu* where w and
u* stack Z«y

i
and u*

i
, i¯ 1,…, G, respectively, and are

GK¬1. The covariance between u*

i
and u*

j
is σ

ij
(Z«Z)

which is the ith row and jth column sub-block in the

covariance matrix of u*. (The whole covariance matrix
can be written as ΣC(Z«Z) where C signifies the
Kroneker product.) Once Σ is estimated consistently
(by the 2SLS method explained in the next section), δ
is efficiently estimated by the generalized least squares
method

δW
$SLS

¯²X«[Σq −"C(Z«Z)−"]X´−"²X«[Σq −"C(Z«Z)−"]w´. (7)

This is the three-stage least squares (3SLS) estimator
by Zellner and Theil (1962). The assumption of the
normal distribution error is not required in this
estimation. The 3SLS estimator is consistent and is
BCAN since it has the same asymptotic distribution as
the FIML estimator.

3. Estimation Methods of a Single Equation and
the Asymptotic Distribution

An alternative way of estimating structural coefficients
is to pick up one structural equation, the ith, in a G-
equation system, and estimate δ

i
neglecting zero

restrictions in other equations. Because of this, the
other (G®1) structural equations can be rewritten
equivalently as (G®1) reduced form equations. The
limited information maximum likelihood (LIML)
estimator by Anderson and Rubin (1949) applies the
FIML method to a (1G

i
)-equation system consisting

of (1) and Y
i
¯ZΠ

i
V

i
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i
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i
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i
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ively. (If we denote Y as (y
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i
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ei
), Y

ei
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structural and reduced form parameters of (y

i
, Y

i
)

given Y
ei

are variation-free from the reduced form
coefficient of Y

ei
. Then Y

ei
is omitted from (2), (3), (4),

and (8).) Using these limited information B and Γ
matrices, we minimize rΩ=

R
r with respect to δ
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and Π
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γ
i
is estimated by the least squares method applied to

(1) replacing β
i
with the estimator.

The two stage least squares (2SLS) estimator is the
generalized least squares estimator applied to Eqn. (6)
using Z«Z as the weight matrix. (See Eqn. (10), where
k is set to 1.) The assumption of the normal dis-
tribution of the error term is not required in this
estimation. Both LIML and 2SLS estimators are
consistent, and the large sample distribution is

oT(δW
i
®δ

i
)!D N(0,®I−"(δ

i
, δ

i
)) (9)
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where I is calculated similarly to Eqn. (5) but Ω
R

is
defined using the limited information B and Γ mat-
rices, and only the diagonal submatrix of Iw" which
corresponds to δ

i
is used. (Partial derivatives are

calculated with respect to δ
i
and columns in Π

i
.) This

asymptotic distribution is a particular case of Eqn. (5).
Both estimators are consistent and BCAN under the
zero restrictions imposed on Eqn. (1).

The k-class estimator δ#
i
(k) unifies both LIML and

2SLS estimators (Theil 1961). It is
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This is the least squares estimator, the 2SLS estimator,
and the LIML estimator when k is 0, 1, and 1λ,
respectively. There are two important properties in the
k-class estimator. It is consistent if p lim

T!¢k¯ 1, and
is BCAN if p lim

T!¢
oT(k®1)¯ 0. If k satisfies these

conditions, the k-class estimator is consistent and
BCAN even when Y!

i
(I®P

Z
)Y

i
and Y!

i
(I®P

Z
)y

i
are

replaced with any matrix and a vector of order O
P
(T ).

4. Exact Distributions of the Single-equation
Estimators

Several early studies compared the bias and mean
squared errors of OLS, LIML, 2SLS, FIML, and
3SLS estimators by the Monte Carlo simulations since
all but OLS estimators are consistent and are in-
distinguishable. The OLS estimator was often found
as reliable as other consistent estimators. Later, the
studies went on to t ratios, and the real defect of OLS
estimators was found: the deviation from the standard
normal distribution is worse than any other sim-
ultaneous equation methods. See Cragg (1967) for
related papers.

Drawing general qualitative comparisons from sim-
ulations is difficult since simulations require setting
values of all population parameters. Simulation
studies on the small sample properties led to the
derivation of the exact distributions, which were
expected to permit the drawing of general comparisons
without depending on the particular parameter
values.

If n¬1 column vectors x
t
, t¯ 1,…, T are inde-

pendently distributed N(m
t
, Ω), the density function of

Σ
t=",T

x
t
x!

t
is the non-central Wishart matrix denoted

as W
n
(T, Ω, M) where the non-centrality parameter is

M¯Σ
t=",T

m
t
m!

t
(Anderson 1958, Chap. 13).

The study of the exact distribution of the single-
equation estimators started from the fact that G¯
(G

kl
) and C¯ (C

kl
), k, l¯ 1,…, 1G

i
in Eqn. (8)

are the noncentral Wishart matrix W
"+G

i

(K®K
i
,

Ω, M) with the noncentrality parameter matrix
M¯Π!

R
Z«(P

Z
®P

Z
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)ZΠ
R
, and the central Wishart

matrix W
"+G

i

(T®K, Ω, 0), respectively. The 2SLS,
OLS, and LIML estimators of β

i
are G−"

##
G

#"
,

(G
##

C
##

)−"(G
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C
#"

), and (G
##

®λC
##

)−"(G
#"

®
λC

#"
), respectively, and λ is the minimum root in the

polynomial equation rG®λC r¯ 0. Since all estim-
ators are functions of elements in the G and C matrices,
their distributions can be characterized by degrees of
freedom of the two Wishart matrices, M and Ω
matrices.

In deriving the exact density functions, the 2SLS
and OLS estimators can be treated in a similar way. In
the 2SLS estimator, the joint density of G is trans-
formed into the joint density of G−"

##
G

#"
, G

""
®G

"#
G−"

##
G

#"
, and G

##
. Integrating out G

""
®G

"#
G

##

−"G
#"

and
G

##
results in the joint density of G−"

##
G

#"
. The resulting

density function includes infinite terms, and zonal
polynomials when G

i
is greater than one. A peda-

gogical derivation is found in Press (1982, Chap. 5). In
the LIML estimator, the joint density of G and C is
transformed into that of characteristic roots and
vectors. Since β# is rewritten as a ratio of elements in a
characteristic vector, the density function is derived by
integrating out unnecessary random variables from
the joint density function. However, the analytical
operations are not easy when there are many en-
dogenous variables. See Phillips (1983, 1985) to find
comprehensive reviews on the 2SLS and LIML esti-
mators, respectively.

It was somewhat fruitless to derive exact distri-
butions because these include nuisance parameters
and infinite terms. It was difficult to draw general
conclusions on the qualitative properties of the esti-
mators from the numerical evaluations of these distri-
butions. See Anderson et al. (1982).

Qualitative properties of the estimators followed
from the exact moments of estimators. Kinal (1980)
proved that the (fixed) k-class estimator in a multiple
endogenous variables case has moments up to
(T®K

i
®G

i
) if 0%k ! 1, and up to L if k¯ 1.

Mariano and Sawa (1972) proved that, in the G
i
¯ 1

case, the mean and variance of the LIML estimator do
not exit. (In Monte Carlo simulations, the bias of
LIML estimators was often found to be smaller than
that of others even though the exact mean is infinite.
This showed the clear limitation of the simulation
methods.)

5. Asymptotic Expansions of the Distributions of
the Single-equation Estimators

Asymptotic expansion of the distribution was intro-
duced as an analytical tool which is more accurate
than the asymptotic distribution but is less com-
plicated than the exact distributions. For instance, the
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t ratio statistic, say X, which is commonly used in
econometrics, has the density function f (x)¯
c[[1(x#}m)]−("+m)/# where c is a constant and m is the
degree of freedom under conditions including the
normally distributed error terms. Since the mean and
variance of X is 0 and m}(m–2), the standardized
statistic Z¯o(m®2)}m[X has the density f(z)¯
c«[[1(z#}(m®2))]−("+m)/# where c« is a new constant.
This density function is expanded to the third-order
term as

f(z)¯φ(z)²1
1

4m
(z%®6z#3)´o(m−") (11)

where φ(z) is the standard normal density function,
and the constant is adjusted so that the area under the
curve is one. (Since the t distribution is symmetric
around the origin, the O(1}om) term does not appear
in the right-hand side of the equation.) Rewriting in
terms of X, the asymptotic expansion of the t statistic
with m degrees of freedom is

f (x)¯φ(x)
1

4m
(x%®2x#®1)φ(x)o(m−") (12)

The first term in the right-hand side is the n(0, 1)
density function. The second term in the right-hand
side converges to zero if the limit is taken with respect
to m. This second term gives deviation of f (x) from
φ(x), and is called the third-order term. For finite m,
the third-order term is expected to improve the
standard normal approximation. The numerical eval-
uation of this expansion is easy.

The asymptotic expansions in the simultaneous
equation estimators are long and include nuisance
parameter matrices such as q below. See Phillips (1983)
for a review and Phillips (1977) for the validity of
expansion. The asymptotic expansion does not require
the assumption of the normal distribution of the error
term. Fujikoshi et al. (1982) gave the expansion of the
joint density of the estimators of δ

i
. In their study, the

bias of the estimators is calculated from the asymp-
totic expansions as

AM(oT(δW
i
®δ

i
))¯

1

oT
(dL®1)I−"qo(T−"),

q¯
1

σ#

E

F

|
#"

®Ω
##

β
i

0

G

H

, (13)

where δ# is the estimator, d is 1 and 0 fo1r 2SLS and
LIML estimators, respectively, and the Ω matrix is
partitioned into submatrices conformable with the
partitions of G and C matrices. AM([) stands for the
mean operator, but uses the asymptotic expansion for
the density function. (Recall that the exact mean does

not exist in the LIML estimator.) It is possible to
compare the two estimators in terms of the calculated
bias. For example, the bias of the 2SLS estimator is 0
when the degree of overidentifiability L is 1.

Further, the mean of the squared errors was
calculated from the asymptotic expansions and used
to compare estimators. It was proved that the mean
squared error of the 2SLS estimator is smaller than
that of the LIML estimator when L is less than or
equal to 6. Historically, this kind of comparison of
‘approximate’ mean squared errors goes back to the
‘Nagar expansion’ by Nagar (1959) and the ‘small
disturbance expansion’ by Kadane (1971). These
qualitative comparisons gave researchers some guid-
ance about the choice of estimators.

It was interesting to examine the accuracy of the
approximations calculated by the asymptotic expan-
sions of distributions. If the asymptotic expansions
were accurate, calculation of the exact distributions
could be avoided, and properties of estimators could
be found easily from the approximations. However,
the approximations were found not to be accurate
enough to replace the exact distributions. There are
many caseswhere the asymptotic expansion is accurate
when the asymptotic distribution, the first term in the
expansion, is already accurate; the asymptotic ex-
pansion is inaccurate when the asymptotic distribution
is inaccurate. In particular, the asymptotic expansions
are inaccurate when

(a) The value of asymptotic variance is small;
(b) The value of L is large; or
(c) The structural error term is highly correlated

with the right-hand side endogenous variable.
It is noted, first, Z«Z}T is assumed to converge a

nonsingular fixed matrix in the asymptotic theory.
Second, for an attempt to improve the accuracy of
asymptotic distributions by incorporating large L
values, see Morimune (1983). Third, the asymptotic
expansions cannot trace closely the skewed exact
distributions that happen particularly when the corr-
elation is high.

6. Higher-order Efficiency of the System and the
Single-equation Estimators

The asymptotic expansions of distributions can be
used in comparing the probabilities of concentration
of estimators about the true parameter values. One
estimator is more desirable than another if its prob-
ability is greater than that of the other. This measure
was used in comparing the single-equation estimators,
and some qualitative results were derived.

Furthermore, the third-order efficiency criterion
was brought in the comparisons. This criterion re-
quires that estimators be adjusted to have the same
asymptotic bias as in Eqn. (13). Then the adjusted
estimators are compared, and themaximum likelihood
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estimator is proved most efficient. It has the highest
concentration about the true parameter values in terms
of the asymptotic expansion of distribution to the
third-order O(1}T ) terms. (Akahira and Takeuchi
(1981), for example.) The adjusted maximum like-
lihood estimator has the smallest mean-squared error
at the same time since the difference among estimators
is found only in the mean-squared errors.

In whole system estimation, the FIML estimator is
third-order efficient. The 3SLS estimator is less effi-
cient than the FIML estimator in terms of the
asymptotic probability of concentration once the bias
of the two estimators is adjusted to be the same.
Morimune and Sakata (1993) derived a simple ad-
justment of the 3SLS estimator so that the adjusted
estimator has the same asymptotic expansion as the
FIML estimator to the third-order O(1}T ) terms.
This estimator is explained by modifying Eqn. (7).
In Eqn. (6), Y

i
is replaced by Y=

i
3Z Π=

i
¯Z(Z«Z)−"

Z«Y
i

so that the X matrix consists of Z«Y=
i

and
Z«Z

i
. In the modified estimator, we estimate Σ and Π

by the first round 3SLS estimator and replace Y=
i
in X

by YN
i
3ZΠN

i
where ΠN

i
consists of proper subcolumns

in ΠN ¯®Γ= B= −". The new X matrix is denoted as XN .
Finally, the new estimator is

δh
M$SLS

¯

²X� «[Σ� −"C(Z«Z)−"]X´−"²X� «[Σ� −"C(Z«Z)−"]w´. (14)

This estimator has the same asymptotic expansion as
the FIML estimator to the third-order terms and is
third-order efficient.

The LIML and 2SLS estimators are simple cases of
the FIML and 3SLS estimators, respectively. Then the
modified 2SLS estimator which follows from Eqn. (14)
has the same asymptotic expansion as the LIML
estimator to the third-order term.TheLIMLestimator
and the modified 2SLS estimator are third-order
efficient in the single-equation estimation.

7. Conclusion

Laurence Klein received the 1980 Nobel prize for the
creation of a macroeconometric model which is an
empirical form of a simultaneous equation system,
and for the application to the analysis of economic
fluctuations and economic policies. The macroecono-
metric model became a standard tool to analyze the
economies and policies of nations. Trygve Haavelmo
received the 1989 Nobel prize for his contribution in
the analysis of simultaneous structures. Haavelmo,
together with other researchers at the Cowles Com-
mission for Research in Economics, then at the
University of Chicago, became the founders of sim-
ultaneous equation analysis in econometrics. Part of
their research is collected in Hood and Koopmans

(1953). Studies on the exact and approximate distribu-
tions of estimators came after the research conducted
at the Cowles group, and helped to make econometrics
rigorous.

Access to computers was the main concern when
econometric model-building started spreading all over
the world in the 1970s. Since then, computer facilities
surrounding econometric model-building have
changed greatly. Bulky mainframe computer have
been replaced by personal computers. Computer
programswerewritten individually,mostly inFortran,
and were used for regression analyses in model
estimation as well as for simulation studies in econo-
metrics theory. The packaged least squares programs
replaced the individually written programs later in
model estimation. They run on personal computers
and have facilitated greatly the conducting of em-
pirical studies.

Seealso:SimultaneousEquationEstimation:Overview
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K. Morimune

Simultaneous Equation Estimation:

Overview

Simultaneous equations are important tools for under-
standing behavior when two or more variables are
determined by the interaction of two or more relation-
ships in such a way that causation is joint rather than
unidirectional. Such situations abound in economics,
but also occur elsewhere. Haavelmo (1943, 1944)
began their modern econometric treatment.

The simplest economic example is the interaction of
buyers and sellers in a competitive market which
jointly determines the quantity sold and price.Another
important example is the interaction of workers,
consumers, investors, firms, and government in deter-
mining the economy’s output, employment, price level,
and interest rates, as in macroeconometric forecasting
models. Even when one is interested only in a single
equation, it often is best interpreted as one of a system
of simultaneous equations.

Strotz and Wold (1960) argued that in principle
every economic action is a response to a previous
action of someone else, but even they agreed that
simultaneous equations are useful when the data are
yearly, quarterly, or monthly, because these periods
are much longer than the typical market response
time.

This article discusses the essentials of simultaneous
equation estimation using a simple linear example.

1. A Simple Supply–Demand Example

Let q and p stand for the quantity sold and price of a
good, y and w for the income and wealth of buyers
(assumed independently determined), u

"
and u

#
for

unobservable random shocks, and Greek letters for

unknown constant parameters. Suppose that market
equilibrium, in which the price is such that suppliers
want to sell the same quantity that demanders what to
buy, is described by these linear equations:

supply: q¯ γ
"
β

"
pu

"
, β

"
" 0 (1)

demand: q¯ γ
#
δ

#
yε

#
wβ

#
pu

#
, β

#
! 0 (2)

Neither equation alone can determine either p or q,
because each equation contains both: these are sim-
ultaneous equations. Solve them for p and q thus:

p¯π
""

π
"#

yπ
"$

w(u
#
®u

"
)}∆ (3)

q¯π
#"

π
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yπ
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w(β
"
u
#
®β

#
u
"
)}∆ (4)

where

π
""

¯ (γ
#
®γ

"
)}∆, π

"#
¯ δ

#
}∆, π

"$
¯ ε

#
}∆ (5)

π
#"

¯ (β
"
γ
#
®β

#
γ
"
)}∆, π

##
¯ β

"
δ
#
}∆,

π
#$

¯ β
"
ε
#
}∆ (6)

and

∆¯ β
"
®β

#
(7)

2. Types of Variables: Structural and Reduced
Form Equations

The variables p and q which are to be explained by the
model are endogenous. Equations (1) and (2) are
structural equations. Each of them describes the
behavior of one of the building blocks of the model,
and (as is typical) contains more than one endogenous
variable. Equations (3) and (4) are reduced form
equations. Each of them contains just one endogenous
variable, and determines its value as a function of
parameters, shocks, and explanatory variables (here y
and w).

The explanatory variables are predetermined if the
shocks for any given period are independent of the
explanatory variables for that period and all previous
periods; they are exogenous if the shocks for each
period are independent of the explanatory variables
for every period. Thus all exogenous variables are
predetermined, but not conversely. For example, the
value of an endogenous variable from a previous
period cannot be exogenous, but it is predetermined if
the shocks are serially independent.

3. The Need for Estimation of Parameters

One job of a reduced form equation is to tell how an
endogenous variable responds to a change in any
predetermined or exogenous variable. Typically, no
single structural equation can do this. Another job of
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